EFED FILE COPY MRID No. 444577-33 # DATA EVALUATION RECORD § 72-3 - ACUTE EC₅₀ TEST WITH AN ESTUARINE/MARINE MOLLUSK SHELL DEPOSITION STUDY 1. CHEMICAL: Prohexadione Calcium PC Code No.: 112600 2. TEST MATERIAL: BAS 125 W Purity: 90.6% 3. CITATION: Author: W.C. Graves, J.P. Swigert, and C.M. Holmes Title: BAS 125 W: A 96-Hour Shell Deposition Test with the Eastern Oyster (Crassostrea virginica) Study Completion Date: April 14, 1997 <u>Laboratory</u>: Wildlife International Ltd., Easton, MD Sponsor: BASF Corporation, Agricultural Products, Research Triangle Park, NC <u>Laboratory Report ID</u>: 147A-148 MRID No.: 444577-33 DP Barcode: D245631 4. REVIEWED BY: Karl Bullock, M.S., Environmental Scientist, Golder Associates Inc. signature: Xal Aullul Date: 7/7/98 APPROVED BY: Pim Kosalwat, Ph.D., Senior Scientist, Golder Associates Inc. signature: P. Kosalwat Date: 7/7/98 5. APPROVED BY: signature: 1 | 17/99 6. STUDY PARAMETERS: Age or Size of Test Organism: Mean valve height 40 mm Definitive Test Duration: 96 hours stt Duration: 96 nours Study Method: Static-renewal Type of Concentrations: Mean measured 7. <u>CONCLUSIONS</u>: The study is scientifically sound and fulfills the guideline requirements for a mollusk shell deposition study. Based on mean measured concentrations, the EC₅₀ was estimated to be >117 ppm ai, which classifies BAS 125 W as practically non-toxic to the Eastern oyster. The NOEC was determined to be 117 ppm ai. #### Results Synopsis EC₅₀: >117 ppm ai 95% C.I.: N/A NOEC: 117 ppm ai Probit Slope: N/A #### 8. ADEQUACY OF THE STUDY: A. Classification: Core B. Rationale: Although a flow-through system was not used in this test, test solutions were aerated and renewed daily. Algal suspension was provided as a supplemental food and control growth was adequate (>2.0 mm). C. Repairability: N/A #### 9. **GUIDELINE DEVIATIONS:** - 1. The amount of peripheral shell removed prior to testing was not reported. - 2. The test was conducted using a static-renewal method; the guidelines require a flow-through test. #### 10. SUBMISSION PURPOSE: #### 11. MATERIALS AND METHODS: #### A. Test Organisms | Guideline Criteria | Reported Information | | | | | | |--|--|--|--|--|--|--| | <u>Species</u> Preferred species are the Pacific oyster (<i>Crassostrea</i> gigas) and the Eastern oyster (<i>Crassostrea</i> virginica) | Crassostrea virginica | | | | | | | Mean valve height 25 - 50 mm along the long axis | 40 mm (Range: 27 - 47 mm) | | | | | | | Supplier | World's End Aquaculture,
Queenstown, MD | | | | | | | Are all oysters from same source? | Yes | | | | | | | Are all oysters from the same year class? | Oysters were of similar age | | | | | | ## B. Source/Acclimation | Guideline Criteria | Reported Information | |--|---| | Acclimation Period Minimum 10 days after collection | 10 days | | Wild caught organisms were quarantined for 7 days? | N/A | | Were there signs of disease or injury? | No | | If treated for disease, was there no sign of the disease remaining during the 48 hours prior to testing? | N/A | | Amount of peripheral shell growth removed prior to testing | Not reported | | Feeding during the acclimation Must be fed to avoid stress. | Algae (Isochrysis sp.,
Thalassiosira sp., Skeletonema
sp., and Chaetoceros sp.) | | <pre>Pretest Mortality <3% mortality 48 hours prior to testing</pre> | Not reported | # c. Test System | Guideline Criteria | Reported Information | |---|--| | Source of dilution water Natural unfiltered seawater from an uncontaminated source. | Natural unfiltered seawater
from Indian River Inlet,
Delaware, diluted to a
salinity of approximately 20%
with well water. | | Does water support test animals without observable signs of stress? | Yes | | <pre>salinity 30-34 % salinity, weekly range < 6%</pre> | 20% | | Guideline Criteria | Reported Information | | | | | | | | |---|---|--|--|--|--|--|--|--| | Water Temperature 15°-30° C, consistent in all test vessels | 21.0 - 22.5°C | | | | | | | | | <u>pH</u> | 7.9 - 8.2 | | | | | | | | | <u>Dissolved Oxygen</u>
≥ 60% throughout | ≥83% of saturation throughout the test | | | | | | | | | Total Organic Carbon | 1.4 mg/L | | | | | | | | | Test Aquaria Should be constructed of glass or stainless steel. | 57-L glass aquaria with 40 L of test solution. | | | | | | | | | Type of Dilution System Must provide reproducible supply of toxicant | N/A | | | | | | | | | Flow rate Consistent flow rate | Test solutions were gently aerated and renewed daily. Oysters were fed an algal suspension. | | | | | | | | | Was the loading of organism such that each individual sits on the bottom with water flowing freely around it? | Not reported | | | | | | | | | Photoperiod 16 hours light, 8 hours dark | 16 hours light, 8 hours dark | | | | | | | | | Solvents Not to exceed 0.5 ml/L | Solvent: None
Maximum conc.: N/A | | | | | | | | ## D. Test Design | Guideline Criteria | Reported Information | |---|---| | Range Finding Test If EC ₅₀ >100 mg/L with 30 oysters, then no definitive test is required. | Yes; 0.97, 3.2, 11, 36, and 120 mg ai/L resulting in shell growth reductions of 37, 11, 3, 24, and 18%, respectively. | | Guideline Criteria | Reported Information | | | | | | |---|---|--|--|--|--|--| | Nominal Concentrations of Definitive Test Control & 5 treatment levels; each conc. should be 60% of the next highest conc.; concentrations should be in a geometric series | Negative control, 16, 26, 43, 72, and 120 mg ai/L. | | | | | | | Number of Test Organisms Minimum 20 individual per test level and in each control | 20 oysters per treatment and control | | | | | | | Test organisms randomly or impartially assigned to test vessels? | Not reported | | | | | | | Biological observations made every 24 hours? | Yes | | | | | | | Water Parameter Measurements 1. Temperature Measured hourly in at least one chamber 2. DO and pH Measured at beginning of test and every 48 h in the high, medium, and low doses and in the control | Temperature was measured in each test chamber at test initiation and termination and continuously in the dilution water control chamber. DO and pH were measured at test initiation, prior to and after each renewal (old and new solutions), and at test termination. | | | | | | | Was chemical analysis performed to determine the concentration of the test material at the beginning and end of the test? (Optional) | Yes; mean recoveries ranged from 96 to 100% of nominal. | | | | | | ## 12. REPORTED RESULTS: ## A. General Results | Guideline Criteria | Reported Information | |--|----------------------| | Quality assurance and GLP compliance statements were included in the report? | Yes | | Guideline Criteria | Reported Information | | | | | | |---|---|--|--|--|--|--| | Control Mortality Not more than 10% of control organisms may die or show abnormal behavior. | 0% in the controls and test
concentrations | | | | | | | <u>Control Shell Deposition</u> Must be at least 2 mm. | Negative control: 2.10 mm | | | | | | | Recovery of Chemical | 96-100% | | | | | | | Raw data included? | Yes | | | | | | | Signs of toxicity (if any) were described? | No sublethal signs of toxicity were observed. | | | | | | #### Shell Growth | POST 19 DEPTERSONS AND LANGUAGE DESCRIPTION | tration
ai/L) | Number | | Mean Shell | Mean | | | |---|------------------|--------------|----------------|-----------------|----------------------|--|--| | Nominal | Mean
Measured | Per
Level | Number
Dead | Deposition (mm) | Percent
Decrease* | | | | Control | >0.05 | 20 | 0 | 2.10 ± 0.83 | - | | | | 16 | 16 | 20 | 0 | 2.15 ± 0.93 | -2.4 | | | | 26 | 25 | 20 | 0 | 2.25 ± 0.69 | -7.1 | | | | 43 | 42 | 20 | 0 | 1.92 ± 1.00 | 8.6 | | | | 72 | 71 | 20 | 0 | 2.28 ± 0.90 | -8.6 | | | | 120 | 120 117 | | 0 | 2.02 ± 0.85 | 3.8 | | | ^{*}Compared to the solvent control. A negative sign indicates stimulation. Other Significant Results: No sublethal signs of test material toxicity were observed. All test solutions appeared clear and colorless with the exception of the 120 mg ai/L test solution, which appeared slightly cloudy. #### B. Statistical Results Method: Non-parametric analysis of variance (Kruskal-Wallis ANOVA by ranks). 96-hr EC_{50} : >117 mg ai/L 95% C.I.: Not determined Probit Slope: N/A NOEC: 117 mg ai/L #### 13. VERIFICATION OF STATISTICAL RESULTS: | Parameter | Result | |---|-----------------------| | Statistical Method for EC ₅₀ | Non-linear regression | | EC ₅₀ | >117 ppm ai | | Probit Slope | N/A | | Statistical Method for NOEC | Dunnett's Test | | NOEC | 117 ppm ai | 14. REVIEWER'S COMMENTS: This study is scientifically sound and fulfills the guideline requirements for a mollusk shell deposition study. Based on mean measured concentrations, the EC₅₀ was determined to be >117 ppm ai, which classifies BAS 125 W as practically non-toxic to Eastern oysters. The NOEC was determined to be 117 ppm ai. This study is classified as Core. | File:44457733.o | ut Page
BAS 125 | 1
W SHELL | DEPOSITION WI | TH EAST | TERN OYSTER | | File:44457733. | out Page | 2 42 | 1 62325 | 5 | 3.05 | | | |-----------------|---|--|--|--|--|-----------------|----------------|--|---|---|----------------------------------|--|---------|--------| | | | | | 11:0 | % Wednesday, | , June 17, 1998 | | 66
67 | 42
42 | 1.62325
1.62325
1.62325 | 6
7 | 1.70
2.55 | | | | | OBS | CONC | LOG_CONC | REP | Y | | | BAS 125 | W SHELL | DEPOSITION WI | TH EAST
11:0 | ERN OYSTER
16 Wednesday. | June 17 | . 1998 | | | 1
2
3 | 0
0
0 | 4 | 1
2
3 | 2.55
0.75
2.60 | | | OBS | | LOG_CONC | REP | Y | ' | • | | | 4
5 | Ó | • | 4 | 2.60
1.80
1.95
2.95
1.45
0.00
2.90 | | | 68
69 | 42
42 | 1.62325
1.62325 | 8
9 | 2.60
1.80 | | | | | 6
7 | 0 | | 5
6
7
8 | 2.95
1.45 | | | 70
71 | 4 <u>2</u>
42 | 1.62325
1.62325 | 10
11
12 | ብ ሰብ | | | | | 9
10 | 0 | • | 9 | 0.00
2.90
1.70 | | | 72
73 | 42
42 | 1.62325
1.62325 | 12
13 | 2.70
2.95
0.00 | | | | | 11
12 | Ŏ | • | 11
12 | 3.15
0.95 | | | 74
75
76 | 42
42
42 | 1.62325 | 13
14
15
16 | 1.60
2.55
2.40 | | | | | 10
11
12
13
14
15 | 000000000000000000000000000000000000000 | • | 13
14 | 2.45
2.05 | | | 77
78 | 42
42 | 1.62325
1.62325 | 17
18
19 | 2.40
1.15
2.80 | | | | | 16
17 | 0 | • | 10
11
12
13
14
15
16
17
18 | 2.00
2.55 | | | 79
80 | 42
42 | 1.62325
1.62325 | 20 | 2.65
3.20 | | | | | 18
19 | 0
0 | • | 18
19 | 1.85 | | | 82
83 | 71
71 | 1.85126
1.85126 | 1
2
3 | 2.80
2.65
3.20
1.65
0.95
2.85
2.85
3.45 | | | | | 20
21 | 0
16
16 | 1.20412 | 20
1 | 2.80
3.40 | | | 84
85 | 71
71 | 1.85126
1.85126 | 4 | 2.85
3.45 | | | | • | 23
24 | 16
16 | 1.20412 | 3 | 1.40
2.65 | | | 86
87
88 | 71
71
71 | 1.85126
1.85126
1.85126 | 2
3
4
5
6
7
8 | 3.20
3.05
3.60 | | | | | 25
26 | 16
16 | 1.20412
1.20412 | 5
6 | 2.25
3.00 | | | 89
90 | 422
422
422
422
422
422
427
711
711
711
711
711
711
711
711 | 1.85126
1.85126 | 9 | กดก | | | | | 27
28
29 | 16
16
16 | 1.20412
1.20412
1.20412 | 2
3
4
5
6
7
8
9 | 0.00
0.45
1.90 | | | 68
690
711
72
73
75
76
77
78
81
82
83
84
85
86
87
99
91
92
93
94
95
97
98
99
99
99
99
99
99
99
99
99
99
99
99 | 71
71
71 | 1.85126
1.85126 | 10
11
12
13
14
15 | 2.55
1.50
2.60
1.85 | | | | \propto | 30
31 | 16
16
16 | 1.20412
1.20412 | | 2.50
2.35 | | | 94
95 | 71
71
71
71 | 1.85126
1.85126 | 14
15 | 1.40 | | | | | 32
33
34 | 16 | 1.20412
1.20412
1.20412 | 12
13 | 2.70
0.70 | | | 96
97 | 71
71
71 | 1.85126
1.85126 | 16
17 | 1.90
2.50 | | | | | 35
36 | 16
16
16 | 1.20412 | 10
11
12
13
14
15
16 | 3.10
2.05 | | | 100 | 71
71 | 1.85126
1.85126
1.85126 | 17
18
19
20 | 3.00
2.75 | | | | | 37
38 | 16
16 | 1.20412
1.20412 | 17
18
19
20 | 1.85
2.35 | | | 101
102
103
104 | 117
117 | 2.06819
2.06819 | 1
2
3
4 | 0.65
1.20 | | | | | 189
221
222
222
233
333
333
334
444
444
445
552
553 | 16
16
16
25
25
25
25
25
25
25
25
25
25
25
25 | 1.20412
1.20412
1.20412
1.20412
1.20412
1.20412
1.20412
1.20412
1.20412
1.20412
1.20412
1.20412
1.20412
1.20412
1.20412
1.20412
1.20412
1.39794
1.39794
1.39794
1.39794
1.39794
1.39794
1.39794
1.39794
1.39794
1.39794
1.39794 | 20
1 | 3.15
0.945
2.05
2.05
3.85
2.840
2.45
3.70
2.370
2.370
2.370
2.370
2.370
2.370
2.370
2.385
3.780
2.375
0.455
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385
2.385 | | | 103
104
105 | 117
117
117 | 1.62325
1.62325
1.62325
1.62325
1.62325
1.62325
1.62325
1.62325
1.62325
1.62325
1.62325
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.85126
1.8512 | 3
4
5 | 1.40
0.45
1.90
2.50
2.90
3.00
2.75
0.65
1.80
2.95
1.75
0.00 | | | | | 4 <u>2</u>
43 | 25
25 | 1.39794
1.39794 | | 1.80
0.55 | | | 105
106
107 | 117
117
117 | 2.06819
2.06819 | 5
6
7
8 | 1.75
0.00 | | | | | 44
45
46 | 25
25
25 | 1.39794
1.39794
1.30704 | 2
3
4
5
6
7 | 3.40
2.40
1.75 | | | 108
109
110 | 117
117
117 | 2.06819
2.06819 | 9 | 0.85
2.60
3.20
2.45
2.75
1.50
1.90
2.80 | | | | | 47
48 | 25
25 | 1.39794
1.39794 | 8 | 2.40
1.75
1.45
2.70
3.20 | | | 111
112 | 117
117 | 2.06819
2.06819 | 10
11
12 | 2.45
2.75 | | | | | 49
50
51 | 25
25
25 | 1.39794
1.39794 | 9
10
11
12 | 3.20
2.20
2.45 | | | 111
112
113
114
115 | 117
117 | 2.06819
2.06819 | 13
14
15
16 | 1.50
1.90 | | | | | 52
53 | 25
25 | 1.39794
1.39794 | 12
13 | 2.60
2.55 | | | 116
117 | 117 | 2.06819 | 16
17 | 2.80
2.85 | | | | | 54
55 | 25
25 | 1.39794
1.39794 | 14
15
16 | 2.75
1.80 | | | 118
119 | 117
117 | 2.06819
2.06819
2.06819 | 18
19 | 2.90
1.75 | | | | | 57
58 | 25
25
25 | 1.39794
1.39794
1.39794 | 17
18 | 1.55
2.65
1.60 | | MODEL | 120
BAS 125 | 117
W SHELL | 2.06819
 DEPOSITION WI
 DBNORM ((LOG_E | 20
TH EAST | 2.70
ERN OYSTER | IGMAN | | | | 59
60 | 25
25
25
25
25
25
25
25
42 | 1.39794
1.39794 | 19
20 | 1.80
2.95 | | MODEL: | LUURI - | WE: | IGHTED REGRESS | ION | 6 Wednesday, | | , 1998 | | | 54
55
56
57
58
59
60
61
63
64 | 42
42
42
42 | 1.39794
1.39794
1.39794
1.62325
1.62325
1.62325
1.62325 | 1
2
3 | 0.80
2.05
1.20 | | | Non-1 | Linear Le | east Squares I
Le COUNT Met | terativ | e Phase | | | | | 64 | 42 | 1.62325 | 4 | 1.20
0.65 | | Iter | LOG_EC | 50 | SIGMA MEC | ÇO GA | Weigh | ted SS | | | | 1
2
3 | 4.646000
2.376200 7
2.376200 7 | 1.522000
.9146759E-18
.9146759E-18
.9146759E-18
met. | 2.100000
2.103189
2.118750
2.118750 | 43.482448
42.223671
41.899853
41.899853 | File:444577.
(Core | rected Tot | tal) 11 | | | | | |----------|---------------------------------------|---------------------------------------|--|--|--|-----------------------|------------|-------------------------|------------------------------|--|----------------------|-----------------------------| | Non- | -Linear Lea | st Squares : | Summary Statisti | cs Depender | nt Variable COUNT | Parar | neter | Estimate | Asymptoti
Std. Erro | r Confid | symptoti
dence In | nterval | | | Source | | DF Weighted | SS Weighted | 1 MS | LOG I | | | 0.0330337264
0.0000000000 | | | Upper
3709589
3355000 | | | Regression
Residual
Uncorrected | | 1 254.250000
119 41.899852
120 296.149852 | 51 0.35209 | 0000
9960 | co | | | 0.0870193237 | | 2.3108 | | | | (Corrected | Total) 1 | 119 41.899852 | 51 | | | | • • | otic Correla | | | • | | NOTE: T | he (approx | imate) Hessi | ian is singular. | | | Cori | | rog_i | EC25 | SIGMA | | C0 | | | Parameter | Estimate | Asymptotic
Std. Error | | mptotic 95 %
ence Interval | S1GF
CO | | -0.39862
125 U SHELL | 1
1025
L DEPOSITION | :
_with Eastern Oy | -0.3986
'STER | i
i | | İ | LOG EC50
SIGMA
CO | 0.000000000 | 0.00000000000 | Lower
2.3762004297
0.0000000000 | Upper
2.3762004297
0.0000000000 | MODEL: Y | OUNG = CO |) * Probnoi | RM ((LOG EC2 | 5 - LOG_CONC) /
R REGRESSION | SIGMA - | 0.67449)
June 17, 1998 | | | | 2.110750000 | 0.07884642401 | 1.9626250075 | 2.2748749925 | OBS | CONC L | .0G_EC25 | SIGMA | CO RESI | D_SS | EC25 | | | | Asymp | ototic Correlati | on Matrix | | 1 | 0 | 2.10345 | 0.038335 | 2.1385 41. | 7834 | 126.898 | | | Corr | LOG | S_EC50 | SIGMA | CO | MODEL: Y | OUNG = CO | PROBNO | RM ((LOG_EC2 | WITH EASTERN OY
5 - LOG CONC) /
1T-06 Vector | SIGMA - | 0.67449)
June 17, 1998 | | | LOG EC50
SIGMA
CO | • | • | • | • | | Plot | of COUNT | *LOG_CONC. | Symbol used is ' | | | | | MODEL: CO | DUNT = CO *
SUMMAR | ELL DÉPOSITION W
PROBNORM ((LOG
LY OF NONLINEAR | EC50 - LOG_CONO
REGRESSION
11:06 Wedne |) / SIGMA)
sday, June 17, 1998 | COUNT
4.0 | Plot | OT PRED*I | LOG_CONC. | Sýmnbolused is ′ | | | | OBS | | LOG_EC50 | SIGMA | | D_SS EC50 | | | | | | | | | HODI | O
BA
EL: YOUNG = | = CO * Probn | 7.9147E-18
LL DEPOSITION W
ORM ((LOG EC25
WEIGHTED REGRES | ITH EASTERN OYS
- LOG_CONC) / S
SION | IGMA - 0.67449) | 3.5 | o | ì | | 0
0 | | | | | | Nam 12 | | | sday, June 17, 1998 | 0 | | | | | | | | 11 | Dep
ter L | non-Linear
cendent Vari
OG_EC25 | Least Squares :
able COUNT Me | thod: Gauss-New | ton | | 0 | ı | 0 | 0 | | 0 | | | 0 3
1 2
2 2 | 3.626000
2.738397
2.362926 | SIGMA
1.522000
0.445974
0.206680 | 2.100000
2.102236
2.102648 | Weighted \$\$ 43.468697 42.364424 42.321921 | 3.0 0
0 | 0 |) | 0
0 | 0
0
0 | | 0 | | | 4 2 | .103000
.103000 | 0.026673
0.038335 | 2.102685
2.138500 | 42.341046
41.793258 | 0 | 0 | | 0 | ŏ | | 0 | | | 6 2 | 2.103450
2.103455 | 0.038335
0.038335 | 2.138500
2.138500 | 41.783527
41.783437 | 0 | 0 | | 0
0 | Q | | 0 | | NOTE: Co | onvergence | 2.103455
criterion m | 0.038335
et. | 2.138500 | 41.783437 | 2.5 0
0
0 | 0 |) | 0 | 0 | | 0 | | Non-L | Linear Leas | t Squares S | ummary Statistic | s Dependen | t Variable COUNT | 0 | 0 |) | | | | 0 | | \$ | Source | I | DF Weighted: | = | MS | 2.0 ^o | | • | ō | | • | 0 | | F | Regression
Residual
Uncorrected | | 2 254.2500000
18 41.7834369
20 296.0334369 | 77 0.35409 | 000
692 | 2.0 | 0 | ı | 0 | 0
0 | | 0
0 | | | File:44457733.out | Page 5 | • | | | | |---|--------------------|--------|--------|--------|-----|-----| | | ľ | | 0 | 0 | | | | | 1.5 | 0 | 0 | 0 | 0 | | | | 1-3 0 | 0 | | 0
0 | • | | | ı | | | 0 | | • | | | Į | | | 0 | | 0 | | | I | 1.0 | | | | | | | I | | | | 0 | 0 | | | ĺ | 0 | | 0 | | • | | | I | | 0 | 0 | | 0 | | | l | 0.5 | v | | _ | | | | l | v | | | 0 | | | | ı | | | | | | | | | | | | | | | | | 0.0 0 | | 0 | | 0 | | | | 1.2 | 1.4 | 1.6 | 1.8 | 3.0 | 2.2 | | | - • - • | *** | | | 2.0 | 2.2 | | | | | LOG CO | NC | | | NOTE: 49 obs had missing values. 117 obs hidden. BAS 125 W SHELL DEPOSITION WITH EASTERN CYSTER COMPARISON OF MEANS FOR NOEL DETERMINATION TEST IF TREATMENT IS LESS THAN CONTROL 11:06 Wednesday, June 17, 1998 General Linear Models Procedure Class Level Information Class Levels Values DOSE 0 16 25 42 71 117 Number of observations in data set = 120 BAS 125 W SHELL DEPOSITION WITH EASTERN OYSTER COMPARISON OF MEANS FOR NOEL DETERMINATION TEST IF TREATMENT IS LESS THAN CONTROL 11:06 Wednesday, June 17, 1998 #### General Linear Models Procedure | Dependent Varial | ble: RESPONSE | | | | | |------------------|---------------|-------------------|----------------|---------|-----------| | Source | ÐF | Sum of
Squares | Mean
Square | F Value | Pr > F | | Model | 5 | 1.82968750 | 0.36593750 | 0.48 | 0.7907 | | Error | 114 | 86.94562500 | 0.76268092 | | | | Corrected Total | 119 | 88.77531250 | | | | | | R-Square | c.v. | Root MSE | RESP | ONSE Mean | | | 0.020610 | 41.21846 | 0.873316 | | 2.118750 | | Source | DF | Type I SS | Mean Square | F Value | Pr > F | |--------|----|-------------|-------------|---------|--------| | DOSE | 5 | 1.82968750 | 0.36593750 | 0.48 | 0.7907 | | Source | DF | Type III SS | Mean Square | f Value | Pr > F | | DOSE | 5 | 1.82968750 | 0.36593750 | 0.48 | 0.7907 | BAS 125 W SHELL DEPOSITION WITH EASTERN OYSTER COMPARISON OF MEANS FOR NOEL DETERMINATION TEST IF TREATMENT IS LESS THAN CONTROL 11:06 Wednesday, June 17, 1998 #### General Linear Models Procedure | Level of | RESPONSE | | | | | |--|----------|--|---------------|---------------|--| | DOSE | N | Mean | SD | | | | 0
16
25
42
71
117
BAS 125 L
COMPARI
TEST | SON OF | 2.10250000
2.14750000
2.24500000
1.92000000
2.27750000
2.02000000
DEPOSITION WITH
MEANS FOR NOEL
TMENT IS LESS T | DETERMINATION | June 17, 1998 | | #### General Linear Models Procedure Dunnett's One-tailed T tests for variable: RESPONSE NOTE: This tests controls the type I experimentwise error for comparisons of all treatments against a control. Alpha= 0.05 Confidence= 0.95 df= 114 MSE= 0.762681 Critical Value of Dunnett's T= 2.260 Minimum Significant Difference= 0.6241 Comparisons significant at the 0.05 level are indicated by '***'. | DOSE
Comperison | Simultaneous
Lower
Confidence
Limit | Difference
Between
Means | Simultaneous
Upper
Confidence
Limit | |--------------------|--|--------------------------------|--| | 71 - 0 | -0.4491 | 0.1750 | 0.7991 | | 25 - 0 | -0.4816 | 0.1425 | 0.7666 | | 16 - 0 | -0.5791 | 0.0450 | 0.6691 | | 117 - 0 | -0.7066 | -0.0825 | 0.5416 | | 42 - 0 | -0.8066 | -0.1825 | 0.4416 | ## EPA PROBIT ANALYSIS PROGRAM USED FOR CALCULATING EC VALUES Version 1.4 # BAS 125 W Oyster Deposition | Conc. | Number
Exposed | Number
Resp. | Observed
Proportion
Responding | Adjusted
Proportion
Responding | Predicted
Proportion
Responding | |----------|-------------------|-----------------|--------------------------------------|--------------------------------------|---------------------------------------| | 16.0000 | 100 | 0 | 0.0000 | 0.0000 | 0.0119 | | 25.0000 | 100 | 0 | 0.0000 | 0.0000 | 0.0164 | | 42,0000 | 100 | 9 | 0.0900 | 0.0900 | 0.0235 | | 71.0000 | 100 | 0 | 0.0000 | 0.0000 | 0.0332 | | 117.0000 | 100 | 4 | 0.0400 | 0.0400 | 0.0452 | Chi - Square Heterogeneity = 25.612 | والمراجع المراجع | | ** | |------------------|---|-----| | | WARNING | * | | * | WARNING | * | | * | the results reported | * | | * S | ignificant heterogeneity exists. The results reported or this data set may not be valid. The results should | * | | * f | or this data set may not be valid. The results should | * | | * be | e interpreted with appropriate caution. ************************************ | ** | | ++++ | *********** | :** | | * | NOTE | * | | <u>.</u> | | * | | * | Slope not significantly different from zero. | * | | <u>.</u> | EC fiducial limits cannot be computed. | * | | **** | ************************************** | ** | | Mu | = 4.646003 | | | Mu | = | 4.646003 | |-------|---|----------| | Sigma | | 1.522005 | | Parameter | Estimate | Std. Err. | | 95% Confide | | |-----------|----------|-----------|---|-------------|-----------| | Intercept | 1.947446 | 2.059623 | (| -4.606275, | 8.501166) | | Slope | 0.657028 | 1.173424 | | -3.076806, | 4.390862) | Theoretical Spontaneous Response Rate = 0.0000 BAS 125 W Oyster Deposition ## Estimated EC Values and Confidence Limits | Point | Conc. | Lower Upper
95% Confidence Limits | |---------|------------------------|--------------------------------------| | EC 1.00 | 12.7457 | | | EC 5.00 | 138.8216 | | | EC10.00 | 495.9086 | | | EC15.00 | 1171.1090 | | | EC50.00 | 44259.1680 | | | EC85.00 | 1672665.8800 | | | EC90.00 | 3950074.5000 | | | EC95.00 | 14110730.0000 | | | EC99.00 | %153689616.0000 | | EC25 = 4229.212 # BAS 125 W Oyster Deposition # PLOT OF ADJUSTED PROBITS AND PREDICTED REGRESSION LINE